A Little Bit on FIP-ERA Differential

Brief Summary:

Fielding Independent Pitching (FIP) is a popular alternative to ERA predicated on a pitcher’s strikeout, walk, and home run rates. The extent to which pitchers deserve credit for having FIPs better or worse than ERAs is something that’s poorly understood, though it’s usually acknowledged that certain pitchers do deserve that credit. Given that some of the non-random difference can be attributed to where a pitcher plays because of defense and park effects, I look at pitchers who change teams and consider the year-over-year correlation between their ERA-FIP differentials. I find that the correlation remains and is not meaningfully different from the year-over-year correlation for pitchers that stay on the same team. However, this effect is (confusingly) confounded with innings pitched.


 

After reading this Lewie Pollis article on Baseball Prospectus, I started thinking more about how to look at FIP and other ERA estimators. In particular, he talks about trying to assess how likely it is that a pitcher’s “outperforming his peripherals” (scare quotes mine) is skill or luck. (I plan to run a more conceptual piece on that FIP and other general issues soon.) That also led me to this FanGraphs community post on FIP, which I don’t think is all that great (I think it’s arguing against a straw man) but raises useful points about FIP regardless.

After chewing on all of that, I had an idea that’s simple enough that I was surprised nobody else (that I could find) had studied it before. Do pitchers preserve their FIP-ERA differential when they change teams? My initial hypothesis is that they shouldn’t, at least not to the same extent as pitchers who don’t change teams. After all, in theory (just to make it clear: in theory) most or much of the difference between FIP and ERA should be related to park and defensive effects, which will change dramatically from team to team. (To see an intuitive demonstration of this, look at the range of ERA-FIP values by team over the last decade, where each team has a sample of thousands of innings. The range is half a run, which is substantial.)

Now, this is dramatically oversimplifying things—for one, FIP, despite its name, is going to be affected by defense and park effects, as the FanGraphs post linked above discusses, meaning there are multiple moving parts in this analysis. There’s also the possibility that there’s either selection bias (pitchers who change teams are different from those who remain) or some treatment effect (changing teams alter’s a pitcher’s underlying talent). Overall, though, I still think it’s an interesting question, though you should feel free to disagree.

First, we should frame the question statistically. In this case, the question is: does knowing that a pitcher changed teams give us meaningful new information about his ERA-FIP difference in year 2 above and beyond his ERA-FIP difference in year 1. (From here on out, ERA-FIP difference is going to be E-F, as it is on FanGraphs.)

I used as data all consecutive pitching seasons of at least 80 IP since 1976. I’ll have more about the inning cutoff in a little bit, but I chose 1976 because it’s the beginning of the free agency era. I said that a pitcher changed teams if they played for one team for all of season 1 and another team for all of season 2; if they changed teams midseason in either season, they were removed from the data for most analyses. I had 621 season pairs in the changed group and 3389 in the same team group.

I then looked at the correlation between year 1 and year 2 E-F for the two different groups. For pitchers that didn’t change teams, the correlation is 0.157, which ain’t nothing but isn’t practically useful. In a regression framework, this means that the fraction of variation in year 2 E-F explained by year 1 E-F is about 2.5%, which is almost negligible. For pitchers who changed teams, the correlation is 0.111, which is smaller but I don’t think meaningfully so. (The two correlations are also not statistically significantly different, if you’re curious.)

Looking at year-to-year correlations without adjusting for anything else is a very blunt way of approaching this problem, so I don’t want to read too much into a null result, but I’m still surprised—I would have thought there would be some visible effect. This still highlights one of the problems with the term Fielding Independent Pitching—the fielders changed, but there was still an (extremely noisy) persistent pitcher effect, putting a bit of a lie to the term “independent” (though as before, there are a lot of confounding factors so I don’t want to overstate this). At some point, I’d like to thoroughly examine how much of this result is driven by lucky pitchers getting more opportunities to keep pitching than unlucky ones, so that’s one for the “further research” pile.

I had two other small results that I ran across while crunching these numbers that are tangentially related to the main point:

  1. As I suspected above, there’s something different about pitchers who change teams compared to those who don’t. The average pitcher who didn’t change teams had an E-F of -0.10, meaning they had a better ERA than FIP. The average pitcher who did change teams had an E-F of 0.05, meaning their FIP was better than their ERA. The swing between the two groups is thus 0.15 runs, which over a few thousand pitchers is pretty big. There’s going to be some survivorship bias in this, because having a positive ERA-FIP might be related to having a high ERA, which makes one less likely to pitch 80 innings in the second season and thus more likely to drop out of my data. Regardless, though, that’s a pretty big difference and suggests something odd is happening in the trade and free agency markets.
  2. There’s a strong correlation between innings pitched in both year 1 and year 2 and E-F in year two for both groups of pitchers. Specifically, each 100 innings pitched in year 1 is associated with a 0.1 increase in E-F in year 2, and each 100 innings pitched in year 2 is associated with a 0.2 decrease in E-F in year 2. I can guess that the second one is happening because lower/negative E-F is going to be related to low ERAs, which get you more playing time, but I find the first part pretty confusing. Anyone who has a suggestion for what that means, please let me know.

So, what does this all signify? As I said before, the result isn’t what I expected, but when working with connections that are this tenuous, I don’t think there’s a clear upshot. This research has, however, given me some renewed skepticism about the way FIP is often employed in baseball commentary. I think it’s quite useful in its broad strokes, but it’s such a blunt instrument that I would advise being wary of people who try to draw strong conclusions about its subtleties. The process of writing the article has also churned up some preexisting ideas I had about FIP and the way we talk about baseball stats in general, so stay tuned for those thoughts as well.

Advertisement

1 thought on “A Little Bit on FIP-ERA Differential

  1. Pingback: What’s the Point of DIPS, Anyway? | That's a Clown Hypothesis, Bro!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s